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A concise synthesis of 12-C-glycosylated dodecanoic acids employing an olefin cross-metathesis reaction
is developed. Examination of these acids as capping agents for the synthesis of metal nanoparticles
reveals that they do not cap the Co-metal nanoparticles synthesized in aqueous phase, but that two of
them can reduce and cap the Ag nanoparticles in water without any aggregation.
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Over the last decade, the potential of noble metal nanoparticles
has been explored in various fields such as optics, microelectronics,
sensors, and catalysis, and so on.1 The mutually advantageous con-
jugation of metal nanoparticles with biomolecules or biologically
relevant ligands has gained much impetus because of their prom-
ising biomedicinal and bioanalytical applications, in addition to
hydrophilic rendition to surfaces and biocompatiblity.2 In this con-
text, glyconanoparticles (GNPs), derived from the surface modifica-
tion of metal nanoparticles by connecting with sugar residues
through O-glycoside linkages, have been recognized as novel tools
to investigate carbohydrate recognition processes.3 An important
issue regarding the in vivo application of glyconanoparticles is
their susceptibility to enzymatic degradation. A viable alternative
in this regard is C-glycosides, which have served as potential car-
bohydrate analogs resistant to metabolic processes. C-Glycosides,
which entail methylene substitution for the anomeric oxygen, are
isosteric mimics of their O-glycoside counterparts, and offer a great
deal of stability without substantial conformational amendment.4

Though the application of C-glycosylated long chain alkanes has
been explored in liquid crystals and as surfactants,5 their use in
glyconanoparticle synthesis has not yet been documented. Herein,
we report our preliminary investigations on the synthesis of 12-a-
C-glycosyl long chain acids, and their use as capping/reducing
agents for silver metal nanoparticles.
ll rights reserved.
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As shown in Figure 1, and considering the fact that simple
monosaccharides in biological systems can exist either in furanose
or in pyranose forms, three compounds 1–3 are selected as rep-
resentatives of pentoaldofuranose (D-ribo), pentoaldopyranose
(D-ribo), and hexoaldopyranose (D-gluco), respectively. The
intended retrosynthetic strategy for the C-glycosyl acids 1–3 is
based upon the cross-metathesis6 of the corresponding peracety-
lated C-allyl glycosides 5–7 with 10-undecene-1-ol (4) followed
by hydrogenation, oxidation, and deprotection.

The synthesis of differently protected a-C-allylribofuranosides7

and a-C-allylglucopyranosides8 is well established. As shown in
Scheme 1, peracetylated allyl glucopyranoside 7 is prepared by
adopting the reported procedure.8 As allylation of tetraacetyl ribo-
furanoside was documented to be nonspecific,7d methyl 2,3,5-tri-
O-acetyl-a-ribofuranoside (8)9 was subjected to allylation to afford
a 11:1 anomeric mixture, a-anomer 5 being the major product.7d

Allylation of 2,3,4,5-tetra-O-acetyl-b-ribopyranoside (10)10 re-
sulted in a mixture of anomers 6 and 11.5b The configurations of
6 and 11 were established with the help of NMR spectral analy-
ses.11 However, as the data of compound 611b were found to match
with those reported for the corresponding b-C-allylribofuran-
oside,7d we carried out single crystal X-ray structural analysis of
6 (Fig. 2), which confirmed our assignments beyond doubt.12–14

Scheme 1 (step b) depicts the general strategy followed for the
synthesis of 12-a-C-glycosyl dodecanoic acids 1–3, employing
cross-metathesis of C-allyl derivatives 5–7 with 10-undecene-1-
ol (4). The C-allyl sugar derivative underwent cross-metathesis
with 10-undecene-1-ol using Grubbs’ 2nd generation catalyst
(5 mol %) to afford inseparable mixture of trans/cis olefins 12–14,
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Figure 1. Selected 12-C glycosylated dodecanoic acid and the retrosynthetic
strategy.
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along with the 10-undecene-1-ol dimer. The olefin mixture was
hydrogenated with 5% Pd/C in methanol:ethyl acetate (1:2) to yield
saturated alcohols 15–17. Oxidation of the hydroxyl group to acid
with RuCl3�H2O and NaIO4

15 followed by deacetylation completed
the synthesis of 12-C-a-glycosyldodecanoic acids 1–3 in overall
yields of 49%, 50%, and 47%, respectively.16

After synthesizing the requisite C-glycosyl acids 1–3, the next
objective was to use them as capping agents for metal nanoparti-
cles. Our initial experiments with Co-metal nanoparticle synthesis,
employing 1–3 as the capping agents under established proce-
dures,17 resulted in aggregation of the nanoparticles. This may be
attributed to the lack of an olefinic moiety in these molecules,
which seems to impart stability to metal nanoparticle systems
such as Co and Ni.17 After a substantial optimization of the exper-
imental parameters, a reductive synthesis of desired C-glycoside
capped silver nanoparticles (Ag NPs) was concluded successfully
by heating silver nitrate and C-glycoside 1 or 2 in dilute alkaline
solution.18,19 The reduction was instantaneous and the Ag NPs
could be isolated as stable powders by simple centrifugation. With
C-glucoside 3, aggregation of the initially formed Ag NPs occured.
Figures A and C (Inset, Fig. 3) show UV–vis spectra and recorded
from alkaline solutions of silver nitrate and acids 1 and 2, respec-
tively. The strong absorption at ca. 410 nm clearly indicates the
formation of Ag NPs. This absorption is due to excitation of the sur-
face plasmons present in the nanoparticles. Transmission electron
microscope (Fig. 3B and D) images of synthesized Ag NPs revealed
the average particle size to be �15 nm.
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Figure 3. Figures A and C showing the UV–vis spectra of Ag NPs synthesized from 1
and 2, respectively. Figures B and D showing TEM image of AgNPs synthesized from
1 and 2, respectively. Insets (A) and (C) show the colors of the Ag NPs synthesized
from 1 and 2, respectively.

Figure 2. The molecular structure of compound 6. Displacement ellipsoids are
drawn at the 40% probability level. H atoms are represented by circles of an
arbitrary radius.
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To conclude, 12-a-C-glycosyl dodecanoic acids containing
either ribopentofuranose, ribopentopyranose, or glucohexopyra-
nose motifs were synthesized, employing cross-metathesis as the
key step. Further studies on the application of these acids as cap-
ping agents for the synthesis of metal nanoparticles reveal that
they do not cap Co-metal nanoparticles synthesized in aqueous
phase. However, C-glycosides 1 and 2 could reduce and cap the
Ag NPs in water without any aggregation. Further studies to under-
stand the mechanism of the reduction of AgNO3 and also the rela-
tion between the sugar configuration and nanoparticle stabilizing
ability are in progress. The biological activity/application of the
synthesized Ag NPs will be published in due course.
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